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Questions concerning species diversity have attracted ecologists and biogeographers for over a century,
mainly because the diversity of life on Earth is in rapid decline, which is expected to continue in the future.
One of the most important current database on species distribution data is the Global Biodiversity Informa-
tion Facility (GBIF), which contains more than 2 billion occurrences for all organisms, and this number
is continuously increasing with the addition of new data and by combining with other applications. Such
data also exist in several national databases, most of which are unfortunately often not freely available
and not included in GBIF. We suspected that the national databases, mostly professionally maintained by
governmental organisations, may be more comprehensive than GBIF, which is not centrally organised and
therefore the national databases may give more accurate predictions than GBIF. To test our assumptions,
we have compared: (i) the amount of data included in the Czech database called Nalezova databaze ochrany
ptirody (NDOP, Discovery database of nature protection) with the amount of data in GBIF after its restric-
tion to the Czech Republic, and (ii) the overlap of the predictions of species distributions for the Czech
Republic, based on these two databases. We have used the family Orchidaceae as a model group. We found
that: (i) there is a significantly larger number of records per studied region (Czech Republic) in NDOP,
compared with GBIF, and (ii) the predictions of Maxent based on orchid records in NDOP are overlapping
to a great degree with the predictions based on data based on orchid records in GBIF. Bearing in mind these
results, we suggest that if only one database is available for the region studied, we must use this one. If
more databases are available for the region studied, we should use the database containing most locations
(usually some of the local ones, like NDOP), because using more locations implies larger significance of
predictions of species distributions.
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Introduction

Questions concerning species diversity
have attracted ecologists and biogeographers
for over a century, mainly because the diversity
of life on Earth is in rapid decline (Spooner et
al., 2018; Baker et al., 2019; Halley & Pimm,
2023), which is expected to continue in the
future (Romén-Palacios & Wiens, 2020). For a
reliable analysis of the rules governing the trends
in species diversity, good data are necessary. To
get them, direct sampling in the field, but also
data available in museums and herbaria, which
contain samples collected over centuries of
field exploration (Smith & Blagoderov, 2012)
are used. Mass digitalisation of all these data
via interactive digital databases is now leading
to their massive public availability (Maldonado
et al., 2015) and to analyses using new
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computational methods and bioinformatic tools
(Soberén & Peterson, 2004; Newbold, 2010).
Currently, one of the most important data-
bases on species distribution data is the Global
Biodiversity Information Facility (GBIF) (e.g.
Beck et al., 2014; Maldonado et al., 2015; Cha-
din et al., 2017; Guedes et al., 2018; Alhajeri &
Fourcade, 2019; Moudry & Devillers, 2020; De
Araujo et al., 2022), which contains currently
more than 2 billion occurrences for all organ-
isms, and this number is continuously increas-
ing with the addition of new data and by com-
bining with other applications (e.g. iNaturalist.
org). Similar kind of data also exists in some
national databases, such as the Czech data-
base called Nalezova databaze ochrany pfirody
(NDOP, Discovery database of nature protec-
tion; see https://portal.nature.cz/nd/), most of
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which are unfortunately often not freely avail-
able and not included in the GBIF.

Thanks to the availability of powerful
computersand advanced software, the occurrence
and distribution of threatened species is now
determined by species distribution models
(SDMs) in combination with GIS techniques,
which use the above-mentioned databases of
species occurrence records and environmental
data on climate, land use, geological substrate
and other parameters as inputs (e.g. Guisan &
Thuiller, 2005; Elith & Leathwick, 2009; Jiang
& Purvis, 2023). Based on these, numerous
papers have been published on current and
future potential distributions of many species,
and their range shifts under various climate
change scenarios (e.g. Kistner & Hatfield, 2018,;
Weterings & Vetter, 2018; Tsiftsis & Djordjevic,
2020; Namkhan et al., 2022; Arotolu et al.,
2023). Many of them have used GBIF as input
(e.g. Salva-Catarineu et al., 2021; Daba et al.,
2023; Krapf, 2023; Mallen-Cooper et al., 2023).

We have used the family Orchidaceae as a
model group. Orchidaceae have a great species
richness with about 20 000-35 000 species
(Dressler, 1993; Chase et al., 2003; Cribb et al.,
2003; Christenhusz & Byng, 2016). They are
heavily threatened by extinction, and dispose
of many varieties of reproductive strategies
(Steffelova et al., 2023) and have an extremely
restricted distribution with relatively small
populations (Svecova et al., 2023). These traits
make orchids an ideal model group because they
are (1) important in conservation biology (Pillon
& Chase, 2007; Swarts & Dixon, 2009) and (ii)
crucial for their distribution and conservation
status (Zhang et al., 2015).

We suspected that on the local scale the
national databases, mostly professionally
maintained by governmental organisations, may
be more comprehensive than GBIF, managed
by the GBIF Secretariat including four groups,
so it is not centrally organised and therefore
the national databases may give more accurate
predictions than GBIF. To our knowledge,
no study was yet published comparing the
outcomes of any SDM method by using data
from GBIF with those using any other national
database. To test our expectations, we have
compared (i) the amount of data included in
the Czech database NDOP with the amount of
data in GBIF, when it is restricted to the Czech
Republic, and (ii) the overlap of the predictions
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of species distributions for the Czech Republic
based on these two databases.

Material and Methods

The Czech Republic was chosen as a model
country because its orchid flora is very well
studied (Stipkova et al., 2021). It is covered
mainly by highlands of moderate altitude
and higher mountains occur at its borders,
especially in the north and south. The climate
of the Czech Republic is typically temperate
with cold, cloudy winters and hot summers.
However, there are some regional and local
differences due to the relief that forms a complex
topography in this area (Palacky University
Olomouc, 2020). Because the Czech Republic is
a relatively small country in terms of latitudinal
range, temperature and precipitation are mostly
affected by local heterogeneity and altitude
(Stipkova et al., 2020b).

Two databases were compared: (i) one of
the most important current database on species
distribution data, the Global Biodiversity
Information Facility (GBIF), which is freely
accessible on https://www.gbif.org/ and (ii) the
database NDOP (https://portal.nature.cz/nd/) of
the Nature Conservation Agency of the Czech
Republic, which is unavailable to the public to
preserve orchid localities in the country. We
used 55 orchid taxa. Their classification and
nomenclature follow Danihelka et al. (2012). All
studied species are threatened and protected on
the national level and included on the national
Red List (Grulich & Chobot, 2017).

NDOP was chosen because we have enough
experience with it. Previously, Stipkova &
Kindlmann (2015), Stipkova et al. (2018, 2020a)
worked on the revision of orchid records in 24
mapping squares (see the network of mapping
squares used for these purposes on https://
www.entospol.cz/sit-mapovych-ctvercu/) in
South Bohemia based on NDOP. More than
82% of records included in these squares
were confirmed in NDOP, when revised. It
was therefore supposed that records included
in NDOP would be similarly correct for the
whole Czech Republic with a small number
of errors. Thus, we considered the NDOP to
be sufficiently reliable for the purpose of this
study. Nature Conservation Agency is divided
into many regional branches across the whole
area of the Czech Republic and each branch
manages a certain area of the country. All data
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from the regional branches are then centralised
in one database that guarantees uniformity of
the database records. Moreover, NDOP allows
their users to easily provide feedback on specific
records, whereas GBIF does not.

We used Maxent (Phillips et al., 2006;
Phillips & Dudik, 2008; Elith et al., 2011) to
predict the current potential distribution of
orchid species in the Czech Republic. The
maximum entropy algorithm in the Maxent
application (Phillips et al., 2006; Phillips &
Dudik, 2008; Elith et al., 2011) is used for
modelling species distribution from presence-
only species records (Elith et al., 2011). This
approach is widely used for predicting current
as well as future distributions of species from
a set of occurrence records and environmental
variables (Yi et al., 2016; Tsiftsis & Djordjevi¢,
2020). A great advantage of this method is that
it has a high predictive performance even for
very small sample sizes (Hernandez et al., 2006;
Elith & Leathwick, 2009; David et al., 2020).

Bioclimatic variables and map of geological
substrates of the Czech Republic were used as en-
vironmental predictors in the SDMs. Initially, 21
environmental variables were selected as predic-
tors. Nineteen of them were bioclimatic variables
and the remaining two were altitude and geo-
logical substrate. The bioclimatic variables were
obtained from the WorldClim database (Fick &
Hijmans, 2017) in a 30-sec resolution (approxi-
mately 1 km?). The map of geological substrate
was obtained from the geological map of the
Czech Republic based on the digital geological
map 1:500 000 (Czech Geological Survey, 1998).
Because the map of the geological substrate is in
vector format, the layer was converted into a ras-
ter format at the same resolution and extent with
the layers of the bioclimatic variables.

To account for multicollinearity between the
19 bioclimatic variables and avoid overfitting,
Pearson correlation coefficients were calculated
for all pairwise interactions. To eliminate
highly correlated variables, only one (i.e. the
one with the higher percent contribution and
training gain) was selected among any pair
of those with a correlation coefficient » in the
range |r| > 0.70. Specifically, in modelling the
potential distribution of the studied species, the
non-highly intercorrelated bioclimatic variables
were used BIO 01 (annual mean temperature),
BIO 02 (mean diurnal temperature range),
BIO 05 (maximal temperature of warmest
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month), BIO 09 (mean temperature of driest
quarter), BIO 12 (annual precipitation), and
BIO 15 (precipitation seasonality). In addition,
the altitude and the geological substrate were
also used. The geological map of the Czech
Republic contains the only categorial variable
used in the models, but we treated all geological
categories as dummy variables.

For both databases (NDOP and GBIF), we
removed duplicate records (records falling in
the same 1 km? grid cell), and we ran Maxent
models only for species having at least 12
records in both databases. For each orchid
species and database used, ten models were run.
At each run, species records were randomly
divided into training and testing datasets using
the ratio between 80% and 20%, and we used
10 000 background samples to characterise the
environmental conditions of the area of interest.
Based on the output of the ten replicates, we
calculated the average prediction.

SDMs outputs are numerical predictions,
which provide a measure of the habitat suitability
in an area (for example, at a country level).
To convert these maps into presence/absence
(binary) maps, the Maximum Sensitivity plus
Specificity (MaxSSS) threshold was applied for
each orchid species and database. This threshold
was selected, as it provides better results than
other thresholds, independently of the data used
either presence/absence or presence-only data
(Liu et al., 2016).

A niche equivalency test was used that
shows Schoener’s D and Hellinger Distances
I of niche overlap (Warren et al., 2008). These
statistics use suitability scores and have been
widely used previously (e.g. Nunes & Pearson,
2017; Martinez-Méndez et al., 2019). Both
these variables (D and /) measure niche overlap
using different calculations, and their values
range from 0 (no overlap between the two
distributions) to 1 (identical distributions).
Only D statistic was used for comparisons of
percentage niche overlap of orchid occurrence
data using Maxent model, as it is widely used
in pairwise comparisons (e.g. El-Gabbas &
Dormann, 2018; Chevalier et al., 2022).

To examine, whether there are significant
differences inthe mean altitude of the distribution
of each of the studied species, we extracted
the altitude values of the grid cells where each
orchid is potentially present after converting
the habitat suitability values into presence/
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absence data. Thus, we compared the altitudinal
values of the species distributions between the
predictions of the two different datasets used in
Maxent by using the Mann-Whitney U test in
Rv.4.1.2 (R Core Team, 2023).

Results
In total, 31 orchid taxa had more than 12 re-
cords in both databases after removing the du-
plicates (Table 1). The number of orchid records
included in GBIF and NDOP differed to a great
degree, when compared in the region of the whole

Czech Republic (Fig. 1). Initially, GBIF data-
base contained 4328 of orchid records, NDOP
contained 105 810 orchid records. The number
of grid cell records analysed here, i.e. those con-
taining enough records, after the reduction for
duplicates etc., ranged from 61 (Neotinea triden-
tata (Scop.) R. M. Bateman, Pridgeon & M. W.
Chase) to 13 636 records (Dactylorhiza majalis
(Rchb.) P. F. Hunt & Summerh.) in the NDOP
database, and from 13 (Gymnadenia densiflora
(Wahlenb.) A. Dietr.) to 384 (Neottia ovata (L.)
R. Br.) records in the GBIF database (Table 1).

Table 1. Species records used in Maxent and D statistics showing the niche overlap between the predictions of the two data-
bases considered of 31 orchid taxa of the Czech Republic using Maxent

Species Number of species records Maxent
NDOP GBIF D statistics
Anacamptis morio (L.) R.M.Bateman, Pridgeon & M.W.Chase 927 115 0.790
Anacamptis pyramidalis (L.) Rich. 238 63 0.625
Cephalanthera damasonium (Mill.) Druce 3631 322 0.860
Cephalanthera longifolia (L.) Fritsch 1493 244 0.813
Cephalanthera rubra (L.) Rich. 542 48 0.698
Cypripedium calceolus L. 576 95 0.692
Dactylorhiza fuchsii (Druce) So6 4912 143 0.754
Dactylorhiza incarnata (L.) Sod 397 51 0.667
Dactylorhiza maculata (L.) Soo 346 32 0.711
Dactylorhiza majalis (Rchb.) P.F.Hunt & Summerh. 13 636 233 0.867
Dactylorhiza sambucina (L.) So6 1150 92 0.751
Epipactis atrorubens (Hoffm.) Besser 643 85 0.700
Epipactis helleborine (L.) Crantz 7109 259 0.866
Epipactis palustris (L.) Crantz 1363 91 0.775
Gymnadenia conopsea (L.) R.Br. 2254 76 0.765
Gymnadenia densiflora (Wahlenb.) A Dietr. 306 13 0.549
Neotinea tridentata (Scop.) R.M.Bateman, Pridgeon & M.W.Chase 61 19 0.455
Neotinea ustulata (L.) R.M.Bateman, Pridgeon & M.W.Chase 1082 70 0.813
Neottia cordata (L.) Rich. 369 22 0.749
Neottia nidus-avis (L.) Rich. 4867 272 0.848
Neottia ovata (L.) Hartm. 5121 384 0.867
Ophrys apifera Huds. 99 31 0.533
Ophrys insectifera L. 121 30 0.501
Orchis mascula (L.) L. 3845 83 0.737
Orchis militaris L. 709 135 0.796
Orchis pallens L. 598 163 0.779
Orchis purpurea Huds. 478 349 0.765
Platanthera bifolia (L.) Rich. 6104 255 0.837
Platanthera chlorantha (Custer) Rchb. 2113 37 0.815
Spiranthes spiralis (L.) Chevall. 232 16 0.729
Traunsteinera globosa (L.) Rchb. 619 42 0.609
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Fig. 1. Boxplot showing the number of orchid records (after
removing duplicate records) in both databases (NDOP and

GBIF) in the Czech Republic.

The values of the D statistics indicating the degree
of niche overlap are presented in Table 1. The lowest
niche overlap was observed in Neotinea tridentata (D

value is 0.455), whereas the highest niche overlap was
found in Dactylorhiza majalis and Neottia ovata (D
value of both is 0.867). Most species showed a per-
centage overlap between 70% and 80%, but no spe-
cies reached a percentage overlap between 90% and
100% (Fig. 2). Habitat suitability maps for each spe-
cies based on data from the GBIF database and NDOP
database are presented in Electronic Supplement 1.
They show that GBIF often (but not always!) makes
similar predictions to those made by NDOP.

The Mann-Whitney U test revealed significant
altitudinal differences between data predictions from
the NDOP and GBIF databases after Maxent had
been applied (Table 2). Almost all data predictions of
NDOP were significantly different from those of the
GBIF database (p < 0.001). Only for Spiranthes spi-
ralis (L.) Chevall. the p-value was lower (p < 0.05).
The differences were not statistically significant only
for two species, namely Gymnadenia conopsea (L.)
R. Brown. and Traunsteinera globosa (L.) Rchb. The
predictions of the Maxent model revealed statistically
higher altitudinal distribution (in terms of the higher
mean altitude) for 20 out of 31 studied species.

Table 2. Comparison of data presented in the NDOP and GBIF databases after Maxent predictions using Mann-Whitney U

test in the Czech Republic

Number of presence | Altitudinal statistics of the presence | Altitudinal statistics of the presence | Mann-Whitney U
. grid cells after Maxent | grid cells obtained through Maxent | grid cells obtained through Maxent |test between data of
Species predictions model using NDOP data model using GBIF data NDOP and GBIF
NDOP GBIF Min | Max | Mean SD Min Max | Mean SD
Anacamptis morio 15 867 30444 | 183 866 | 447.01 124.68 187 699 | 397.17 | 88.95 *K
Anacamptis pyramidalis 10 383 7460 162 841 | 423.56 128.64 162 656 | 376.06 | 86.39 ok
Cephalanthera damasonium 37 059 46 600 86 671 356.33 94.41 131 598 | 323.52 | 84.06 *x
Cephalanthera longifolia 23313 26284 | 200 841 | 420.34 98.67 187 1359 | 403.30 | 105.56 *k
Cephalanthera rubra 21286 20 198 97 825 | 415.48 87.41 245 745 | 423.81 | 74.78 *k
Cypripedium calceolus 28 840 50398 | 180 | 690 | 370.70 91.64 51 577 | 298.18 | 77.66 *
Dactylorhiza fuchsii 20 551 15897 | 289 | 1524 | 721.20 186.47 157 1524 | 761.42 | 193.02 *k
Dactylorhiza incarnata 32281 27520 | 51 1007 | 302.94 123.37 51 1524 | 277.10 | 115.65 **
Dactylorhiza maculata 23 650 10966 | 223 | 1524 | 654.78 218.79 185 1524 | 806.85 | 212.42 *k
Dactylorhiza majalis 47016 36189 | 382 | 1402 | 638.53 142.23 157 1461 | 637.57 | 190.93 **
Dactylorhiza sambucina 6179 9341 271 982 | 528.45 147.00 296 1407 | 646.23 | 195.12 *k
Epipactis atrorubens 25 068 14465 | 177 | 1248 | 492.41 188.78 235 1524 | 718.49 | 232.75 *E
Epipactis helleborine 43931 24665 | 148 | 1461 | 517.68 205.98 235 1524 | 651.44 | 219.08 *k
Epipactis palustris 24 220 25905 | 159 | 1080 | 477.55 163.07 125 928 | 357.45 | 130.59 *K
Gymnadenia conopsea 16 199 8385 183 | 1524 | 604.26 221.12 125 1524 | 622.69 | 244.74 0.168
Gymnadenia densiflora 14 816 43087 | 125 | 1461 | 393.75 146.58 51 516 | 281.40 | 77.67 ok
Neotinea tridentata 19 116 35078 | 168 827 | 343.50 124.34 51 516 | 25834 | 72.80 *k
Neotinea ustulata 20 544 22946 | 51 729 | 410.17 105.60 51 656 | 364.54 | 104.50 ok
Neottia cordata 13 008 5154 288 | 1524 | 819.48 152.36 742 1524 | 953.35 | 131.51 *E
Neottia nidus-avis 30 649 31391 | 162 866 | 395.92 104.79 189 785 | 364.61 | 86.69 ok
Neottia ovata 35841 31233 | 125 | 1325 | 446.99 184.64 125 1325 | 386.59 | 182.54 *E
Ophrys apifera 13701 21397 | 162 | 671 | 343.17 105.90 134 545 | 274.90 | 86.71 ok
Ophrys insectifera 18 257 5340 51 906 | 361.74 175.65 51 863 | 299.98 | 96.65 *E
Orchis mascula 8705 8791 249 | 969 | 528.73 145.60 237 857 | 492.85 | 127.91 ok
Orchis militaris 11 695 12880 | 152 779 | 327.19 119.01 51 1524 | 304.25 | 124.16 *E
Orchis pallens 9638 12834 | 175 733 | 412.72 108.13 192 671 | 380.36 | 106.62 *k
Orchis purpurea 28 813 22 468 86 623 | 333.34 84.03 86 559 | 285.07 | 68.93 *K
Platanthera bifolia 44770 29432 | 189 | 1209 | 494.24 174.18 230 1461 | 553.56 | 217.43 *k
Platanthera chlorantha 35793 13703 | 162 | 1282 | 581.17 210.81 51 1524 | 740.47 | 270.59 *k
Spiranthes spiralis 32768 92074 | 122 | 1209 | 425.56 109.94 143 1133 | 420.58 | 143.28 *
Traunsteinera globosa 6289 3738 171 | 1461 | 537.32 185.68 171 952 | 521.89 | 142.36 0.182

Note: ** —p <0.001, * — p <0.05.
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GBIF database using D statistic from Maxent application in
the Czech Republic.

Fig. 3 shows the importance of the environ-
mental variables when orchid records from NDOP
and GBIF are used in Maxent. The evaluation of
the importance of each environmental variable was
based on the jackknife test using each predictor
separately. The lengths of the bars correspond to
the percentage contribution of each environmental
predictor to the total training gain of each model.
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For example, in the line associated with Anacamp-
tis morio (L.) R. M. Bateman, Pridgeon & M. W.
Chase, when NDOP data are used, the longest bar
(the dark green one) is the mean diurnal temper-
ature range (BIO 02). This means that the most
important environmental variable for Anacamptis
morio, when NDOP data are used, is the mean diur-
nal temperature range (BIO 02). Another important
output of Fig. 3 is that the importance of variables
may vary to a great extent between various data-
bases used in the Maxent model. Specifically, for
Gymnadenia densiflora, the geological substrate
was the most important variable when data from
NDOP were used, whereas altitude was among
the less important ones. On the contrary, when the
GBIF data were used, the importance of altitude
was high, whereas that of the geological substrate
was not. Something similar was also observed in
the case of Spiranthes spiralis: when NDOP data
were used, variables had a rather equal importance
in the model, whereas when GBIF data were used,
precipitation seasonality (BIO 15) was by far the
most important variable compared to the others.
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Fig. 3. The importance of the variables when orchid records from NDOP and GBIF are used in Maxent in the Czech Republic. The
evaluation of the importance of each environmental variable was based on the jackknife test using each predictor separately. The
lengths of the bars correspond to the percentage contribution of each environmental predictor to the total training gain of each model.
Designation of the variables: ALT (altitude), GEO (geology), BIO 01 (annual mean temperature), BIO 02 (mean diurnal temperature
range), BIO 09 (mean temperature of driest quarter), BIO 12 (annual precipitation) and BIO 15 (precipitation seasonality).
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Differences in importance of the correspond-
ing variables for the 31 orchid taxa when NDOP
vs. GBIF data were used are documented in
scatterplots in Fig. 4. The importance of altitude
(ALT) and annual mean temperature (BIO 01)
was higher (points above the diagonal in Fig. 4)

when GBIF data were used, compared to the re-
sults of the NDOP data. On the contrary, when
the NDOP data were used, the importance of the
geological substrate for most orchid taxa was
much stronger than when GBIF data were used
(points below the diagonal in Fig. 4).
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Fig. 4. Scatterplots showing the importance of each environmental variable based on the jack-knife test using each predic-
tor separately in the case of the NDOP and GBIF database in the Czech Republic. Points above the main diagonal indicate
a higher importance of the corresponding variable, when GBIF data are used and vice versa. Designation of the variables:
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Each dot represents an individual orchid species.
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Discussion

The central topic of this paper is the
comparison of accuracy of predictions based
on public databases like GBIF against the
governmentally controlled ones, like NDOP.
We must admit that there are some practical
advantages, when public databases, such as
GBIF, are used for saving time and money and
the uniformity of presented data that are ready to
use for many analyses (Maldonado et al., 2015).
However, how do the resulting predictions differ?
What are the problems, when predictions based
on records in the public databases like GBIF are
compared with predictions of governmentally
maintained ones, like NDOP?

First, our results show that there is a much
larger number of orchid records in the govern-
mentally maintained databases like NDOP than
in public ones like GBIF, when like with like
(i.e. records for the same region in both data-
bases) is compared. In our study, the number
of orchid records included in NDOP in the re-
gion specified at the beginning of the analysis
(Czech Republic in this case) was much higher
than that in GBIF (see Table 1). The reason for
this is the long-term and systematic collection of
data for NDOP from various parts of the Czech
Republic. This renders a great advantage to the
NDOP database for accuracy of predictions of
species distribution in the region selected. The
prevalence of records in the governmentally
maintained databases, as opposed to the public
ones, when like with like (the same region for
both databases) is considered is not a solitary
phenomenon of the Czech Republic. For exam-
ple, the same occurs, when Greece is consid-
ered: GBIF for Greece has about 25 000 records
(https://www.gbif.org/analytics/global), where-
as the national database owned by Dr. Spyros
Tsiftsis has more than 170 000 records (personal
communication). So, the prevalence of records
in the governmentally maintained databases, as
opposed to the public ones, when like with like
(the same region for both databases) is consid-
ered, seems to be a general phenomenon, if the
governmentally maintained databases are good.

Second, in public databases like GBIF, the
records are usually not as strictly controlled
for correctness as governmentally maintained
databases like NDOP. Questionable quality of
unverified datasets, mistakes in the taxonomic
identification of specimens or inaccurate
georeferencing are common traits of public
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databases (Maldonado et al., 2015). Scientists
and experts agree that a correct species name
should be a minimum requirement for including
the data in public databases, as well as an
accurate georeferencing (Marcer et al., 2022),
but this is not always the case. Mistakes in
taxonomic identification can often be corrected
by a taxonomist who has the possibility to access
the specimen personally or at least see its image
(Maldonado et al., 2015), and this is much
more common in governmentally maintained
databases like NDOP than in GBIF. A similar
situation is with the errors in georeferencing
(Graham et al., 2004).

Third, there is a common problem with re-
cords in public databases, like GBIF. Here, there
are data spatially biased in most cases, which
can greatly affect results of macroecological/bi-
ogeographical studies (Beck et al., 2014; Bowler
et al., 2022; Boyd et al., 2022).

All these problematic inaccuracies can (and
often will) affect results of studies dealing with
biodiversity patterns, environmental niches and/
or distribution predictions. Thus, information
from public databases, like GBIF, must be used
with caution due to important issues with data
quality mentioned in the previous three para-
graphs (Bowler et al., 2022; Boyd et al., 2022;
Marcer et al., 2022). Just one example: it is well
known that orchid distribution is strongly af-
fected by the geological substrate (Djordjevi¢
& Tsiftsis, 2022). This is obvious when NDOP
records, but not when the GBIF records are used
(see Fig. 4G).

Surprisingly, despite of what was said in the
four previous paragraphs, when two predictions
were made: one based on records contained in
NDOP and another one based on records con-
tained in GBIF, then these two predictions were
overlapping to a great degree in most cases (Ta-
ble 1; Fig. 2), and there were often only rather
small differences between them (Table 2; Fig.
4). Also, our results in Electronic Supplement 1
show that GBIF often (but not always!) makes
similar predictions as NDOP. This suggests that
GBIF may be used (with caution!) when no good
local database is available.

No matter of what was said above here in
the Discussion, there is one criterion that should
be used, if the mentioned above does not sug-
gest any preference for the use of public or gov-
ernmentally based database: it is well known in
statistics that the significance of the tests is posi-
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tively correlated with the amount of data used
in the test (Sokal & Rohlf, 2012). Therefore, the
database containing more locations in the region
considered should be preferred, because more
locations imply a larger significance of predic-
tions of species distribution.

Conclusions

Our analyses have shown that the predic-
tions of species distributions based on data of
orchid records from NDOP and GBIF databases
are overlapping to a great degree. NDOP allows
their users to easily provide feedback on specific
records, whereas GBIF does not. Problematic in-
accuracies might affect results of studies dealing
with biodiversity patterns, environmental niches
and/or distribution predictions, when based on
public databases like GBIF, which therefore
must be considered with caution. However, pub-
lic databases have advantages in saving time and
money in data collection and in uniformity of
these data. With respect to significance of tests
used, we suggest always using the database con-
taining more locations (NDOP in our case), be-
cause more locations imply larger significance
of predictions of species distributions.
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¢doB yxe Oosee cToaeTns, NIABHBIM 00pa3oM ITOTOMY, YTO pa3HOOOpa3ue HU3HHU Ha 3eMiie OBICTPO COKparia-
€TCsl, 4TO, KaK OXKHIACTCsI, IPOAOIDKUTCS U B OyynieM. Ha HacTosmunit MOMEHT OJHOM 13 Hanbosiee KPyImHBIX
6a3 maHHBIX 0 pacupocTpaHeHnu BUa0B sBisiercs Global Biodiversity Information Facility (GBIF), koropas
COIEPXKUT Oojiee 2 MWIIIMAPJIOB HAXOAOK BCEX OPraHU3MOB, M ATO YHCIIO MOCTOSHHO YBEIMYUBAETCS C JI0-
0aBJICHNEM HOBBIX JJAHHBIX U B COYETAHUH C APYTMMH MPUIOKECHUSIMH. Takue JJaHHbBIE TaKKe COAEpIKaTCs B
HAIMOHAJIBHBIX 0a3aX JaHHBIX, OOJBIINHCTBO M3 KOTOPHIX, K COXKAJICHHIO, YACTO HE HAXOIATCS B CBOOOIHOM
nocrynie U He accounupoBanbl ¢ GBIF. Mbl peanonoxuiy, 4To HallHOHAJIbHbIE 0a3bl TaHHBIX, B OCHOBHOM
Ipo¢heCCHOHANIBHO TOJICP’KUBACMBIE TPABUTEIbCTBEHHBIMH OPTaHU3aLUSIMH, MOTYT OBITH OOJIee MOJTHBIMH,
yem GBIF, koTopelii He HMEeT IEHTPATN30BAHHON OpraHM3allNK, M YTO TIOATOMY HAallMOHAJIbHBIC 0a3bl JaH-
HBIX MOTYT JaBaTh Oojiee TOYHBIC MPOTHO3BI pacrpenencHus BuaoB, yeM GBIF. UroOsl nposeputs Hamm
TUIOTE3bI, MBI cpaBHIIA: (1) 00beM JaHHBIX, BKIIOUCHHBIX B 0a3y maHHbIX Yemckoi PecryOnmku «Nalezova
databaze ochrany pfirody» (NDOP, [ba3a naHHBIX MECTOHaXOKICHUH ISl OXpaHBI MPUPOALI]), ¢ 00beMOM
naanbelx B GBIF B npenenax tepputopun Yenickoii Pecrry6onmuku, u (2) mepekpbITHe MPOTHOCTUYECKUX KapT
MIPOCTPAHCTBEHHOTO pacrpesiesieHust BuaoB B Yemickoit PecrryOnmike Ha OCHOBaHMHM 3THX JIBYX 0a3 JaHHBIX.
B xauecTBe MOzENBHONM TPYHIBI pacTeHUH MbI Mcmosb3oBasn cemeiictBo Orchidaceae. Mbl oOHapyXmiH,
4T0: (i) CyIIeCTBYeT 3HAYUTEIBHO OOJIbIIEE KOJMISCTBO 3alUCeH sl TeppuTOpHK HecnenoBanus (Yemickas
Pecny6nuka) B 6aze NDOP 1o cpaBaenuto ¢ 6a3oii GBIF, u (ii) mporao3sl MpocTpaHCTBEHHOTO pacipeaee-
HUS BUJIOB C HCIOJIb30BaHKEM Maxent, OCHOBaHHBIE Ha MH()OPMAIINK O MECTOHAXOKICHUSIX OpxuIei B Oaze
NDOP, B 3HaYNTEIIEHON CTETIEHH MEPEKPHIBAIOTCS C TAKOBHIMH, OCHOBAaHHBIMU Ha JIAHHBIX O MECTOHAXOXKJIe-
Husix BUJ0B B 0asze GBIF. YuutsiBas 3Tu pe3ynbrarTsl, MBI [10JIaraeM, 4TO, €CIIH JUIS HCCIEIyEMON TEPPHUTO-
PHH JIOCTYIIHA TOJIBKO O/lHa 0a3a JaHHBIX, HEOOXOAMMO HCIIOIB30BaTh MMEHHO ee. Ecin ke i TeppuTopun
HCCIIE/IOBaHUS TOCTYITHO Ooiblie 0a3 JaHHBIX, MBI JOJDKHBI MCHOJB30BaTh Ty M3 HUX, KOTOpas BKIIOYAET
OouibIree KOJMYECTBO MECTOHAXOKICHUH BUAOB (OOBIYHO 3TO OfHA M3 0a3 JaHHBIX MECTHOTO 3HAYEHUS, KaK
NDOP), nmockosbKy HCIIOJIB30BaHNE OOJIBIIETO KOJMUYECTBA MECTOHAXOXKICHUH MoipasyMeBaeT Oosee BhICO-
KYyI0 3HAYMMOCTh MOJICTUPOBAHNUS IIPOCTPAHCTBEHHOT'O paclpe/elICHHsI BUIOB.

Kurouessbie cioBa: Global Biodiversity Information Facility, NDOP, 6a3b1 faHHbBIX, MOZIEN pacHpeaeIeHUs
BUJIOB, PACIPOCTPAHEHUE OPXUICH
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