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Questions concerning species diversity have attracted ecologists and biogeographers for over a century, 
mainly because the diversity of life on Earth is in rapid decline, which is expected to continue in the future. 
One of the most important current database on species distribution data is the Global Biodiversity Informa-
tion Facility (GBIF), which contains more than 2 billion occurrences for all organisms, and this number 
is continuously increasing with the addition of new data and by combining with other applications. Such 
data also exist in several national databases, most of which are unfortunately often not freely available 
and not included in GBIF. We suspected that the national databases, mostly professionally maintained by 
governmental organisations, may be more comprehensive than GBIF, which is not centrally organised and 
therefore the national databases may give more accurate predictions than GBIF. To test our assumptions, 
we have compared: (i) the amount of data included in the Czech database called Nálezová databáze ochrany 
přírody (NDOP, Discovery database of nature protection) with the amount of data in GBIF after its restric-
tion to the Czech Republic, and (ii) the overlap of the predictions of species distributions for the Czech 
Republic, based on these two databases. We have used the family Orchidaceae as a model group. We found 
that: (i) there is a significantly larger number of records per studied region (Czech Republic) in NDOP, 
compared with GBIF, and (ii) the predictions of Maxent based on orchid records in NDOP are overlapping 
to a great degree with the predictions based on data based on orchid records in GBIF. Bearing in mind these 
results, we suggest that if only one database is available for the region studied, we must use this one. If 
more databases are available for the region studied, we should use the database containing most locations 
(usually some of the local ones, like NDOP), because using more locations implies larger significance of 
predictions of species distributions.

Key words: databases, Global Biodiversity Information Facility, NDOP, orchid distribution, species dis�, NDOP, orchid distribution, species dis� NDOP, orchid distribution, species dis-
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Introduction
Questions concerning species diversity 

have attracted ecologists and biogeographers 
for over a century, mainly because the diversity 
of life on Earth is in rapid decline (Spooner et 
al., 2018; Baker et al., 2019; Halley & Pimm, 
2023), which is expected to continue in the 
future (Román�Palacios & Wiens, 2020). For a 
reliable analysis of the rules governing the trends 
in species diversity, good data are necessary. To 
get them, direct sampling in the field, but also 
data available in museums and herbaria, which 
contain samples collected over centuries of 
field exploration (Smith & Blagoderov, 2012) 
are used. Mass digitalisation of all these data 
via interactive digital databases is now leading 
to their massive public availability (Maldonado 
et al., 2015) and to analyses using new 

computational methods and bioinformatic tools 
(Soberón & Peterson, 2004; Newbold, 2010). 

Currently, one of the most important data-
bases on species distribution data is the Global 
Biodiversity Information Facility (GBIF) (e.g. 
Beck et al., 2014; Maldonado et al., 2015; Cha-
din et al., 2017; Guedes et al., 2018; Alhajeri & 
Fourcade, 2019; Moudrý & Devillers, 2020; De 
Araujo et al., 2022), which contains currently 
more than 2 billion occurrences for all organ-
isms, and this number is continuously increas-
ing with the addition of new data and by com-
bining with other applications (e.g. iNaturalist.
org). Similar kind of data also exists in some 
national databases, such as the Czech data-
base called Nálezová databáze ochrany přírody 
(NDOP, Discovery database of nature protec-
tion; see https://portal.nature.cz/nd/), most of 
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which are unfortunately often not freely avail-
able and not included in the GBIF.

Thanks to the availability of powerful 
computers and advanced software, the occurrence 
and distribution of threatened species is now 
determined by species distribution models 
(SDMs) in combination with GIS techniques, 
which use the above-mentioned databases of 
species occurrence records and environmental 
data on climate, land use, geological substrate 
and other parameters as inputs (e.g. Guisan & 
Thuiller, 2005; Elith & Leathwick, 2009; Jiang 
& Purvis, 2023). Based on these, numerous 
papers have been published on current and 
future potential distributions of many species, 
and their range shifts under various climate 
change scenarios (e.g. Kistner & Hatfield, 2018; 
Weterings & Vetter, 2018; Tsiftsis & Djordjević, 
2020; Namkhan et al., 2022; Arotolu et al., 
2023). Many of them have used GBIF as input 
(e.g. Salvà�Catarineu et al., 2021; Daba et al., 
2023; Krapf, 2023; Mallen-Cooper et al., 2023).

We have used the family Orchidaceae as a 
model group. Orchidaceae have a great species 
richness with about 20 000–35 000 species 
(Dressler, 1993; Chase et al., 2003; Cribb et al., 
2003; Christenhusz & Byng, 2016). They are 
heavily threatened by extinction, and dispose 
of many varieties of reproductive strategies 
(Steffelová et al., 2023) and have an extremely 
restricted distribution with relatively small 
populations (Švecová et al., 2023). These traits 
make orchids an ideal model group because they 
are (i) important in conservation biology (Pillon 
& Chase, 2007; Swarts & Dixon, 2009) and (ii) 
crucial for their distribution and conservation 
status (Zhang et al., 2015).

We suspected that on the local scale the 
national databases, mostly professionally 
maintained by governmental organisations, may 
be more comprehensive than GBIF, managed 
by the GBIF Secretariat including four groups, 
so it is not centrally organised and therefore 
the national databases may give more accurate 
predictions than GBIF. To our knowledge, 
no study was yet published comparing the 
outcomes of any SDM method by using data 
from GBIF with those using any other national 
database. To test our expectations, we have 
compared (i) the amount of data included in 
the Czech database NDOP with the amount of 
data in GBIF, when it is restricted to the Czech 
Republic, and (ii) the overlap of the predictions 

of species distributions for the Czech Republic 
based on these two databases. 

Material and Methods
The Czech Republic was chosen as a model 

country because its orchid flora is very well 
studied (Štípková et al., 2021). It is covered 
mainly by highlands of moderate altitude 
and higher mountains occur at its borders, 
especially in the north and south. The climate 
of the Czech Republic is typically temperate 
with cold, cloudy winters and hot summers. 
However, there are some regional and local 
differences due to the relief that forms a complex 
topography in this area (Palacký University 
Olomouc, 2020). Because the Czech Republic is 
a relatively small country in terms of latitudinal 
range, temperature and precipitation are mostly 
affected by local heterogeneity and altitude 
(Štípková et al., 2020b). 

Two databases were compared: (i) one of 
the most important current database on species 
distribution data, the Global Biodiversity 
Information Facility (GBIF), which is freely 
accessible on https://www.gbif.org/ and (ii) the 
database NDOP (https://portal.nature.cz/nd/) of 
the Nature Conservation Agency of the Czech 
Republic, which is unavailable to the public to 
preserve orchid localities in the country. We 
used 55 orchid taxa. Their classification and 
nomenclature follow Danihelka et al. (2012). All 
studied species are threatened and protected on 
the national level and included on the national 
Red List (Grulich & Chobot, 2017).

NDOP was chosen because we have enough 
experience with it. Previously, Štípková & 
Kindlmann (2015), Štípková et al. (2018, 2020a) 
worked on the revision of orchid records in 24 
mapping squares (see the network of mapping 
squares used for these purposes on https://
www.entospol.cz/sit-mapovych-ctvercu/) in 
South Bohemia based on NDOP. More than 
82% of records included in these squares 
were confirmed in NDOP, when revised. It 
was therefore supposed that records included 
in NDOP would be similarly correct for the 
whole Czech Republic with a small number 
of errors. Thus, we considered the NDOP to 
be sufficiently reliable for the purpose of this 
study. Nature Conservation Agency is divided 
into many regional branches across the whole 
area of the Czech Republic and each branch 
manages a certain area of the country. All data 
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from the regional branches are then centralised 
in one database that guarantees uniformity of 
the database records. Moreover, NDOP allows 
their users to easily provide feedback on specific 
records, whereas GBIF does not.

We used Maxent (Phillips et al., 2006; 
Phillips & Dudík, 2008; Elith et al., 2011) to 
predict the current potential distribution of 
orchid species in the Czech Republic. The 
maximum entropy algorithm in the Maxent 
application (Phillips et al., 2006; Phillips & 
Dudík, 2008; Elith et al., 2011) is used for 
modelling species distribution from presence-
only species records (Elith et al., 2011). This 
approach is widely used for predicting current 
as well as future distributions of species from 
a set of occurrence records and environmental 
variables (Yi et al., 2016; Tsiftsis & Djordjević, 
2020). A great advantage of this method is that 
it has a high predictive performance even for 
very small sample sizes (Hernandez et al., 2006; 
Elith & Leathwick, 2009; David et al., 2020).

Bioclimatic variables and map of geological 
substrates of the Czech Republic were used as en-
vironmental predictors in the SDMs. Initially, 21 
environmental variables were selected as predic-
tors. Nineteen of them were bioclimatic variables 
and the remaining two were altitude and geo-
logical substrate. The bioclimatic variables were 
obtained from the WorldClim database (Fick & 
Hijmans, 2017) in a 30-sec resolution (approxi-
mately 1 km2). The map of geological substrate 
was obtained from the geological map of the 
Czech Republic based on the digital geological 
map 1:500 000 (Czech Geological Survey, 1998). 
Because the map of the geological substrate is in 
vector format, the layer was converted into a ras-
ter format at the same resolution and extent with 
the layers of the bioclimatic variables. 

To account for multicollinearity between the 
19 bioclimatic variables and avoid overfitting, 
Pearson correlation coefficients were calculated 
for all pairwise interactions. To eliminate 
highly correlated variables, only one (i.e. the 
one with the higher percent contribution and 
training gain) was selected among any pair 
of those with a correlation coefficient r in the 
range |r| > 0.70. Specifically, in modelling the 
potential distribution of the studied species, the 
non-highly intercorrelated bioclimatic variables 
were used BIO 01 (annual mean temperature), 
BIO 02 (mean diurnal temperature range), 
BIO 05 (maximal temperature of warmest 

month), BIO 09 (mean temperature of driest 
quarter), BIO 12 (annual precipitation), and 
BIO 15 (precipitation seasonality). In addition, 
the altitude and the geological substrate were 
also used. The geological map of the Czech 
Republic contains the only categorial variable 
used in the models, but we treated all geological 
categories as dummy variables.

For both databases (NDOP and GBIF), we 
removed duplicate records (records falling in 
the same 1 km2 grid cell), and we ran Maxent 
models only for species having at least 12 
records in both databases. For each orchid 
species and database used, ten models were run. 
At each run, species records were randomly 
divided into training and testing datasets using 
the ratio between 80% and 20%, and we used 
10 000 background samples to characterise the 
environmental conditions of the area of interest. 
Based on the output of the ten replicates, we 
calculated the average prediction.

SDMs outputs are numerical predictions, 
which provide a measure of the habitat suitability 
in an area (for example, at a country level). 
To convert these maps into presence/absence 
(binary) maps, the Maximum Sensitivity plus 
Specificity (MaxSSS) threshold was applied for 
each orchid species and database. This threshold 
was selected, as it provides better results than 
other thresholds, independently of the data used 
either presence/absence or presence-only data 
(Liu et al., 2016). 

A niche equivalency test was used that 
shows Schoener’s D and Hellinger Distances 
I of niche overlap (Warren et al., 2008). These 
statistics use suitability scores and have been 
widely used previously (e.g. Nunes & Pearson, 
2017; Martínez�Méndez et al., 2019). Both 
these variables (D and I) measure niche overlap 
using different calculations, and their values 
range from 0 (no overlap between the two 
distributions) to 1 (identical distributions). 
Only D statistic was used for comparisons of 
percentage niche overlap of orchid occurrence 
data using Maxent model, as it is widely used 
in pairwise comparisons (e.g. El-Gabbas & 
Dormann, 2018; Chevalier et al., 2022).

To examine, whether there are significant 
differences in the mean altitude of the distribution 
of each of the studied species, we extracted 
the altitude values of the grid cells where each 
orchid is potentially present after converting 
the habitat suitability values into presence/
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absence data. Thus, we compared the altitudinal 
values of the species distributions between the 
predictions of the two different datasets used in 
Maxent by using the Mann�Whitney U test in 
R v. 4.1.2 (R Core Team, 2023).

Results
In total, 31 orchid taxa had more than 12 re-

cords in both databases after removing the du-
plicates (Table 1). The number of orchid records 
included in GBIF and NDOP differed to a great 
degree, when compared in the region of the whole 

Czech Republic (Fig. 1). Initially, GBIF data-
base contained 4328 of orchid records, NDOP 
contained 105 810 orchid records. The number 
of grid cell records analysed here, i.e. those con-
taining enough records, after the reduction for 
duplicates etc., ranged from 61 (Neotinea triden-
tata (Scop.) R. M. Bateman, Pridgeon & M. W. 
Chase) to 13 636 records (Dactylorhiza majalis 
(Rchb.) P. F. Hunt & Summerh.) in the NDOP 
database, and from 13 (Gymnadenia densiflora 
(Wahlenb.) A. Dietr.) to 384 (Neottia ovata (L.) 
R. Br.) records in the GBIF database (Table 1).

Table 1. Species records used in Maxent and D statistics showing the niche overlap between the predictions of the two data-
bases considered of 31 orchid taxa of the Czech Republic using Maxent

Species Number of species records Maxent
NDOP GBIF D statistics

Anacamptis morio (L.) R.M.Bateman, Pridgeon & M.W.Chase 927 115 0.790
Anacamptis pyramidalis (L.) Rich. 238 63 0.625
Cephalanthera damasonium (Mill.) Druce 3631 322 0.860
Cephalanthera longifolia (L.) Fritsch 1493 244 0.813
Cephalanthera rubra (L.) Rich. 542 48 0.698
Cypripedium calceolus L. 576 95 0.692
Dactylorhiza fuchsii (Druce) Soó 4912 143 0.754
Dactylorhiza incarnata (L.) Soó 397 51 0.667
Dactylorhiza maculata (L.) Soó 346 32 0.711
Dactylorhiza majalis (Rchb.) P.F.Hunt & Summerh. 13 636 233 0.867
Dactylorhiza sambucina (L.) Soó 1150 92 0.751
Epipactis atrorubens (Hoffm.) Besser 643 85 0.700
Epipactis helleborine (L.) Crantz 7109 259 0.866
Epipactis palustris (L.) Crantz 1363 91 0.775
Gymnadenia conopsea (L.) R.Br. 2254 76 0.765
Gymnadenia densiflora (Wahlenb.) A.Dietr. 306 13 0.549
Neotinea tridentata (Scop.) R.M.Bateman, Pridgeon & M.W.Chase 61 19 0.455
Neotinea ustulata (L.) R.M.Bateman, Pridgeon & M.W.Chase 1082 70 0.813
Neottia cordata (L.) Rich. 369 22 0.749
Neottia nidus-avis (L.) Rich. 4867 272 0.848
Neottia ovata (L.) Hartm. 5121 384 0.867
Ophrys apifera Huds. 99 31 0.533
Ophrys insectifera L. 121 30 0.501
Orchis mascula (L.) L. 3845 83 0.737
Orchis militaris L. 709 135 0.796
Orchis pallens L. 598 163 0.779
Orchis purpurea Huds. 478 349 0.765
Platanthera bifolia (L.) Rich. 6104 255 0.837
Platanthera chlorantha (Custer) Rchb. 2113 37 0.815
Spiranthes spiralis (L.) Chevall. 232 16 0.729
Traunsteinera globosa (L.) Rchb. 619 42 0.609
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The values of the D statistics indicating the degree 
of niche overlap are presented in Table 1. The lowest 
niche overlap was observed in Neotinea tridentata (D 

value is 0.455), whereas the highest niche overlap was 
found in Dactylorhiza majalis and Neottia ovata (D 
value of both is 0.867). Most species showed a per-
centage overlap between 70% and 80%, but no spe-
cies reached a percentage overlap between 90% and 
100% (Fig. 2). Habitat suitability maps for each spe-
cies based on data from the GBIF database and NDOP 
database are presented in Electronic Supplement 1. 
They show that GBIF often (but not always!) makes 
similar predictions to those made by NDOP.

The Mann�Whitney U test revealed significant 
altitudinal differences between data predictions from 
the NDOP and GBIF databases after Maxent had 
been applied (Table 2). Almost all data predictions of 
NDOP were significantly different from those of the 
GBIF database (p < 0.001). Only for Spiranthes spi-
ralis (L.) Chevall. the p-value was lower (p < 0.05). 
The differences were not statistically significant only 
for two species, namely Gymnadenia conopsea (L.) 
R. Brown. and Traunsteinera globosa (L.) Rchb. The 
predictions of the Maxent model revealed statistically 
higher altitudinal distribution (in terms of the higher 
mean altitude) for 20 out of 31 studied species.

Fig. 1. Boxplot showing the number of orchid records (after 
removing duplicate records) in both databases (NDOP and 
GBIF) in the Czech Republic.

Species

Number of presence 
grid cells after Maxent 

predictions

Altitudinal statistics of the presence 
grid cells obtained through Maxent 

model using NDOP data

Altitudinal statistics of the presence 
grid cells obtained through Maxent 

model using GBIF data

Mann�Whitney U 
test between data of 

NDOP and GBIF
NDOP GBIF Min Max Mean SD Min Max Mean SD

Anacamptis morio 15 867 30 444 183 866 447.01 124.68 187 699 397.17 88.95 **
Anacamptis pyramidalis 10 383 7460 162 841 423.56 128.64 162 656 376.06 86.39 **
Cephalanthera damasonium 37 059 46 600 86 671 356.33 94.41 131 598 323.52 84.06 **
Cephalanthera longifolia 23 313 26 284 200 841 420.34 98.67 187 1359 403.30 105.56 **
Cephalanthera rubra 21 286 20 198 97 825 415.48 87.41 245 745 423.81 74.78 **
Cypripedium calceolus 28 840 50 398 180 690 370.70 91.64 51 577 298.18 77.66 **
Dactylorhiza fuchsii 20 551 15 897 289 1524 721.20 186.47 157 1524 761.42 193.02 **
Dactylorhiza incarnata 32 281 27 520 51 1007 302.94 123.37 51 1524 277.10 115.65 **
Dactylorhiza maculata 23 650 10 966 223 1524 654.78 218.79 185 1524 806.85 212.42 **
Dactylorhiza majalis 47 016 36 189 382 1402 638.53 142.23 157 1461 637.57 190.93 **
Dactylorhiza sambucina 6179 9341 271 982 528.45 147.00 296 1407 646.23 195.12 **
Epipactis atrorubens 25 068 14 465 177 1248 492.41 188.78 235 1524 718.49 232.75 **
Epipactis helleborine 43 931 24 665 148 1461 517.68 205.98 235 1524 651.44 219.08 **
Epipactis palustris 24 220 25 905 159 1080 477.55 163.07 125 928 357.45 130.59 **
Gymnadenia conopsea 16 199 8385 183 1524 604.26 221.12 125 1524 622.69 244.74 0.168
Gymnadenia densiflora 14 816 43 087 125 1461 393.75 146.58 51 516 281.40 77.67 **
Neotinea tridentata 19 116 35 078 168 827 343.50 124.34 51 516 258.34 72.80 **
Neotinea ustulata 20 544 22 946 51 729 410.17 105.60 51 656 364.54 104.50 **
Neottia cordata 13 008 5154 288 1524 819.48 152.36 742 1524 953.35 131.51 **
Neottia nidus-avis 30 649 31 391 162 866 395.92 104.79 189 785 364.61 86.69 **
Neottia ovata 35 841 31 233 125 1325 446.99 184.64 125 1325 386.59 182.54 **
Ophrys apifera 13 701 21 397 162 671 343.17 105.90 134 545 274.90 86.71 **
Ophrys insectifera 18 257 5340 51 906 361.74 175.65 51 863 299.98 96.65 **
Orchis mascula 8705 8791 249 969 528.73 145.60 237 857 492.85 127.91 **
Orchis militaris 11 695 12 880 152 779 327.19 119.01 51 1524 304.25 124.16 **
Orchis pallens 9638 12 834 175 733 412.72 108.13 192 671 380.36 106.62 **
Orchis purpurea 28 813 22 468 86 623 333.34 84.03 86 559 285.07 68.93 **
Platanthera bifolia 44 770 29 432 189 1209 494.24 174.18 230 1461 553.56 217.43 **
Platanthera chlorantha 35 793 13 703 162 1282 581.17 210.81 51 1524 740.47 270.59 **
Spiranthes spiralis 32 768 92 074 122 1209 425.56 109.94 143 1133 420.58 143.28 *
Traunsteinera globosa 6289 3738 171 1461 537.32 185.68 171 952 521.89 142.36 0.182
Note: ** – p < 0.001, * – p < 0.05.

Table 2. Comparison of data presented in the NDOP and GBIF databases after Maxent predictions using Mann�Whitney U 
test in the Czech Republic
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Fig. 2. Percentage overlap between data from NDOP and 
GBIF database using D statistic from Maxent application in 
the Czech Republic.

Fig. 3 shows the importance of the environ-
mental variables when orchid records from NDOP 
and GBIF are used in Maxent. The evaluation of 
the importance of each environmental variable was 
based on the jackknife test using each predictor 
separately. The lengths of the bars correspond to 
the percentage contribution of each environmental 
predictor to the total training gain of each model. 

For example, in the line associated with Anacamp-
tis morio (L.) R. M. Bateman, Pridgeon & M. W. 
Chase, when NDOP data are used, the longest bar 
(the dark green one) is the mean diurnal temper-
ature range (BIO 02). This means that the most 
important environmental variable for Anacamptis 
morio, when NDOP data are used, is the mean diur-
nal temperature range (BIO 02). Another important 
output of Fig. 3 is that the importance of variables 
may vary to a great extent between various data-
bases used in the Maxent model. Specifically, for 
Gymnadenia densiflora, the geological substrate 
was the most important variable when data from 
NDOP were used, whereas altitude was among 
the less important ones. On the contrary, when the 
GBIF data were used, the importance of altitude 
was high, whereas that of the geological substrate 
was not. Something similar was also observed in 
the case of Spiranthes spiralis: when NDOP data 
were used, variables had a rather equal importance 
in the model, whereas when GBIF data were used, 
precipitation seasonality (BIO 15) was by far the 
most important variable compared to the others.

Fig. 3. The importance of the variables when orchid records from NDOP and GBIF are used in Maxent in the Czech Republic. The 
evaluation of the importance of each environmental variable was based on the jackknife test using each predictor separately. The 
lengths of the bars correspond to the percentage contribution of each environmental predictor to the total training gain of each model. 
Designation of the variables: ALT (altitude), GEO (geology), BIO 01 (annual mean temperature), BIO 02 (mean diurnal temperature 
range), BIO 09 (mean temperature of driest quarter), BIO 12 (annual precipitation) and BIO 15 (precipitation seasonality).
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Differences in importance of the correspond-
ing variables for the 31 orchid taxa when NDOP 
vs. GBIF data were used are documented in 
scatterplots in Fig. 4. The importance of altitude 
(ALT) and annual mean temperature (BIO 01) 
was higher (points above the diagonal in Fig. 4) 

when GBIF data were used, compared to the re-
sults of the NDOP data. On the contrary, when 
the NDOP data were used, the importance of the 
geological substrate for most orchid taxa was 
much stronger than when GBIF data were used 
(points below the diagonal in Fig. 4).

Fig. 4. Scatterplots showing the importance of each environmental variable based on the jack-knife test using each predic-
tor separately in the case of the NDOP and GBIF database in the Czech Republic. Points above the main diagonal indicate 
a higher importance of the corresponding variable, when GBIF data are used and vice versa. Designation of the variables: 
A) ALT (altitude), B) BIO 01 (annual mean temperature), C) BIO 02 (mean diurnal temperature range), D) BIO 09 (mean 
temperature of driest quarter), E) BIO 12 (annual precipitation), F) BIO 15 (precipitation seasonality) and G) GEO (geology). 
Each dot represents an individual orchid species.
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Discussion
The central topic of this paper is the 

comparison of accuracy of predictions based 
on public databases like GBIF against the 
governmentally controlled ones, like NDOP. 
We must admit that there are some practical 
advantages, when public databases, such as 
GBIF, are used for saving time and money and 
the uniformity of presented data that are ready to 
use for many analyses (Maldonado et al., 2015). 
However, how do the resulting predictions differ? 
What are the problems, when predictions based 
on records in the public databases like GBIF are 
compared with predictions of governmentally 
maintained ones, like NDOP?

First, our results show that there is a much 
larger number of orchid records in the govern-
mentally maintained databases like NDOP than 
in public ones like GBIF, when like with like 
(i.e. records for the same region in both data-
bases) is compared. In our study, the number 
of orchid records included in NDOP in the re-
gion specified at the beginning of the analysis 
(Czech Republic in this case) was much higher 
than that in GBIF (see Table 1). The reason for 
this is the long-term and systematic collection of 
data for NDOP from various parts of the Czech 
Republic. This renders a great advantage to the 
NDOP database for accuracy of predictions of 
species distribution in the region selected. The 
prevalence of records in the governmentally 
maintained databases, as opposed to the public 
ones, when like with like (the same region for 
both databases) is considered is not a solitary 
phenomenon of the Czech Republic. For exam-
ple, the same occurs, when Greece is consid-
ered: GBIF for Greece has about 25 000 records 
(https://www.gbif.org/analytics/global), where-
as the national database owned by Dr. Spyros 
Tsiftsis has more than 170 000 records (personal 
communication). So, the prevalence of records 
in the governmentally maintained databases, as 
opposed to the public ones, when like with like 
(the same region for both databases) is consid-
ered, seems to be a general phenomenon, if the 
governmentally maintained databases are good.

Second, in public databases like GBIF, the 
records are usually not as strictly controlled 
for correctness as governmentally maintained 
databases like NDOP. Questionable quality of 
unverified datasets, mistakes in the taxonomic 
identification of specimens or inaccurate 
georeferencing are common traits of public 

databases (Maldonado et al., 2015). Scientists 
and experts agree that a correct species name 
should be a minimum requirement for including 
the data in public databases, as well as an 
accurate georeferencing (Marcer et al., 2022), 
but this is not always the case. Mistakes in 
taxonomic identification can often be corrected 
by a taxonomist who has the possibility to access 
the specimen personally or at least see its image 
(Maldonado et al., 2015), and this is much 
more common in governmentally maintained 
databases like NDOP than in GBIF. A similar 
situation is with the errors in georeferencing 
(Graham et al., 2004).

Third, there is a common problem with re-
cords in public databases, like GBIF. Here, there 
are data spatially biased in most cases, which 
can greatly affect results of macroecological/bi-
ogeographical studies (Beck et al., 2014; Bowler 
et al., 2022; Boyd et al., 2022). 

All these problematic inaccuracies can (and 
often will) affect results of studies dealing with 
biodiversity patterns, environmental niches and/
or distribution predictions. Thus, information 
from public databases, like GBIF, must be used 
with caution due to important issues with data 
quality mentioned in the previous three para-
graphs (Bowler et al., 2022; Boyd et al., 2022; 
Marcer et al., 2022). Just one example: it is well 
known that orchid distribution is strongly af-
fected by the geological substrate (Djordjević 
& Tsiftsis, 2022). This is obvious when NDOP 
records, but not when the GBIF records are used 
(see Fig. 4G). 

Surprisingly, despite of what was said in the 
four previous paragraphs, when two predictions 
were made: one based on records contained in 
NDOP and another one based on records con-
tained in GBIF, then these two predictions were 
overlapping to a great degree in most cases (Ta-
ble 1; Fig. 2), and there were often only rather 
small differences between them (Table 2; Fig. 
4). Also, our results in Electronic Supplement 1 
show that GBIF often (but not always!) makes 
similar predictions as NDOP. This suggests that 
GBIF may be used (with caution!) when no good 
local database is available.

No matter of what was said above here in 
the Discussion, there is one criterion that should 
be used, if the mentioned above does not sug-
gest any preference for the use of public or gov-
ernmentally based database: it is well known in 
statistics that the significance of the tests is posi-
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tively correlated with the amount of data used 
in the test (Sokal & Rohlf, 2012). Therefore, the 
database containing more locations in the region 
considered should be preferred, because more 
locations imply a larger significance of predic-
tions of species distribution.

Conclusions
Our analyses have shown that the predic-

tions of species distributions based on data of 
orchid records from NDOP and GBIF databases 
are overlapping to a great degree. NDOP allows 
their users to easily provide feedback on specific 
records, whereas GBIF does not. Problematic in-
accuracies might affect results of studies dealing 
with biodiversity patterns, environmental niches 
and/or distribution predictions, when based on 
public databases like GBIF, which therefore 
must be considered with caution. However, pub-
lic databases have advantages in saving time and 
money in data collection and in uniformity of 
these data. With respect to significance of tests 
used, we suggest always using the database con-
taining more locations (NDOP in our case), be-
cause more locations imply larger significance 
of predictions of species distributions.
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Вопросы, касающиеся изучения видового разнообразия, привлекают внимание экологов и биогеогра-
фов уже более столетия, главным образом потому, что разнообразие жизни на Земле быстро сокраща-
ется, что, как ожидается, продолжится и в будущем. На настоящий момент одной из наиболее крупных 
баз данных о распространении видов является Global Biodiversity Information Facility (GBIF), которая 
содержит более 2 миллиардов находок всех организмов, и это число постоянно увеличивается с до-
бавлением новых данных и в сочетании с другими приложениями. Такие данные также содержатся в 
национальных базах данных, большинство из которых, к сожалению, часто не находятся в свободном 
доступе и не ассоциированы с GBIF. Мы предположили, что национальные базы данных, в основном 
профессионально поддерживаемые правительственными организациями, могут быть более полными, 
чем GBIF, который не имеет централизованной организации, и что поэтому национальные базы дан-
ных могут давать более точные прогнозы распределения видов, чем GBIF. Чтобы проверить наши 
гипотезы, мы сравнили: (1) объем данных, включенных в базу данных Чешской Республики «Nálezová 
databáze ochrany přírody» (NDOP, [База данных местонахождений для охраны природы]), с объемом 
данных в GBIF в пределах территории Чешской Республики, и (2) перекрытие прогностических карт 
пространственного распределения видов в Чешской Республике на основании этих двух баз данных. 
В качестве модельной группы растений мы использовали семейство Orchidaceae. Мы обнаружили, 
что: (i) существует значительно большее количество записей для территории исследования (Чешская 
Республика) в базе NDOP по сравнению с базой GBIF, и (ii) прогнозы пространственного распределе-
ния видов с использованием Maxent, основанные на информации о местонахождениях орхидей в базе 
NDOP, в значительной степени перекрываются с таковыми, основанными на данных о местонахожде-
ниях видов в базе GBIF. Учитывая эти результаты, мы полагаем, что, если для исследуемой террито-
рии доступна только одна база данных, необходимо использовать именно ее. Если же для территории 
исследования доступно больше баз данных, мы должны использовать ту из них, которая включает 
большее количество местонахождений видов (обычно это одна из баз данных местного значения, как 
NDOP), поскольку использование большего количества местонахождений подразумевает более высо-
кую значимость моделирования пространственного распределения видов.

Ключевые слова: Global Biodiversity Information Facility, NDOP, базы данных, модели распределения 
видов, распространение орхидей
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